Skip to content  

Working at TU/e

Post-Master PDEng position on Fault diagnosis of professional printers

Post-Master PDEng position on Fault diagnosis of professional printers

Position
Professional Doctorate in Engineering (PDEng trainee)
Department(s)
Electrical Engineering
FTE
1,0
Date off
31/03/2021
Reference number
V36.4788

Job description

The ICT post-master designers program is a two-year salaried program in the field of technological design in Electrical Engineering. The program leads to a Professional Doctorate in Engineering (PDEng) degree.

Project description

An important part of the PDEng programme is the design project which will be performed at Océ technologies. The project is spread over two years and aims to develop your design engineers' abilities. In the project, a specific design objective must be reached within a restricted period of time and with limited means. In accordance with the supervising professor the candidate will be given the opportunity to gather specialized knowledge for the design project already in the first year of your Traineeship. You will be coached by experienced design engineers from industry and/or by TU/e staff with clear and relevant design experience. You will acquire independence and learn to make choices and work well in a project-based manner.

Canon Production Printing develops several high-end digital inkjet printer systems for the high-volume and graphic arts professional printing markets. Here, the demands on print quality are stringent, i.e., no print quality artefacts and consistent good quality prints at high speed with little to no downtime of the printing system. Print quality depends on precisely jetting ink droplets on moving media (e.g. paper), how the image is subsequently formed by interactions between droplets and the media, and finally the ink solidification process. Hence, many mechanical, physical and chemical interaction processes play a role in creating a high quality print.

Each printer has a printer health management architecture which attempts to ensure constant printing quality. Currently, near-real-time acoustic wave sensing is applied to establish the condition of jetting nozzles. Decision tree analysis of the acoustic impulse response results in a known nozzle status and an estimation of the print quality.

Canon Production Printing is working on next-generation printer health architecture. Therefore, an advanced imaging sensor is under development to provide real-time data on print quality in addition to the acoustic measurements. Both methods result in large amounts of data that are excellently suited to be classified by deep learning algorithms (e.g., convolutional neural network). Due to the many variables governing the print quality and (expected) availability of sensor data, application of deep learning classification to acoustic and imaging data is necessary.

This PDEng project will consist of; deep learning algorithm development, simulation of print quality artifacts on a virtual printer and hands-on experimentation on printing systems.

For acoustic data, deep learning can be applied directly to the existing datasets. The goal is to replace the decision tree classification process with a deep learning classification algorithm.

In case of the imaging sensor creating a representative training set of high quality using a real printer is infeasible. Not only from the perspective of the time that would be needed, but also because it is difficult to reproduce many of the relevant print quality artifacts with a real printer. In order to obtain training sets the candidate will use a virtual printer model to create a suitable high-quality training set based on simulation data and subsequently train a deep learning model for print artifact detection. The effectiveness of the deep learning model will be tested using real printer data obtained using the scanning system.

The result of both approaches would be a closed loop print quality control for future printing systems.

Electronic Sytems Group

Eindhoven University of Technology (TU/e) is a world-leading research university specializing in engineering science & technology. The Department of Electrical Engineering is responsible for research and education in Electrical Engineering. The discipline covers technologies and electrical phenomena involved in computer engineering, information processing, energy transfer and telecommunication. The department strives for societal relevance through an emphasis on the fields of smart sustainable systems, the connected world and care & cure. The TU/e is the world’s best-performing research university in terms of research cooperation with industry (#1 since 2009).

The Electronic Systems group consists of seven full professors, ten assistant professors, several postdocs, about 50 PDEng and PhD candidates and support staff. The ES group is world-renowned for its design automation and embedded systems research. It is our ambition to provide a scientific basis for design trajectories of electronic systems, ranging from digital circuits to cyber-physical systems. The trajectories are constructive and lead to high quality, cost-effective systems with predictable properties (functionality, timing, reliability, power dissipation, and cost). Design trajectories for applications that have strict real-time requirements and stringent power constraints are an explicit focus point of the group.

Job requirements

We are looking for candidates that match the following profile:

  • A master's degree in Computer Science, Electrical Engineering or related disciplines with excellent grades.
  • Excellent knowledge of signal processing algorithms, computer architectures and hardware/software design.
  • Solid programming skills (e.g., in C or C++).
  • Experience with Matlab programming.
  • A team player that enjoys to work in multicultural teams.
  • Good communication and organization skills.
  • Excellent English language skills (writing and presenting).

Conditions of employment

  • A meaningful job in a dynamic and ambitious university with a close relationship to industry.
  • A full-time employment for two years.
  • To support you during your PDEng and to prepare you for the rest of your career, you will have free access to a personal development program for PDEng trainees.
  • A gross monthly salary and benefits in accordance with the Collective Labor Agreement for Dutch Universities.
  • Additionally, an annual holiday allowance of 8% of the yearly salary, plus a year-end allowance of 8.3% of the annual salary.
  • A broad package of fringe benefits, including an excellent technical infrastructure, moving expenses, and savings schemes.
  • Family-friendly initiatives are in place, such as an international spouse program, and excellent on-campus children day care and sports facilities.

Information and application

Information

Do you recognize yourself in this profile and would you like to know more? Please visit our website at http://www.tue.nl/pdeng-trainees, for more general information about the PDEng traineeship.
For more information about the project and any informal enquiries, please contact dr.ir. S. Stuijk (s.stuijk[a]tue.nl)

More information on employment conditions can be found here.

Please visit www.tue.nl/jobs to find out more about working at TU/e!

 Application

If interested, please use 'apply now'-button at the top of this page. You should upload the following:

  • a cover letter explaining your motivation and suitability for the position;
  • a detailed Curriculum Vitae (including a list of publications and key achievements in research project(s));
  • contact information of two references;
  • copies of diplomas with course grades;
  • results of your IELTS test.

Candidates will be selected based on graduation mark and proficiency at university including consideration of the reputation of the university, relevant experience and skills, writing skills and publications, work experience as well as performance in relevant modeling exercises and interviews.

Please keep in mind; you can upload only 5 documents up to 2 MB each.