Skip to content  

Working at TU/e

PhD Student Modelling advanced engine combustion concepts

PhD Student Modelling advanced engine combustion concepts

The Eindhoven University of Technology, Department of Mechanical Engineering has a vacancy for a PhD Student Modelling advanced engine combustion concepts, V35.4293 in the Power and Flow group.
Position
PhD-student
FTE
1,0
Date off
29/02/2020
Reference number
V35.4293

Job description

Modelling advanced engine combustion concepts / Driven by societal challenges on CO2 emissions and energy security, new pre-mixed combustion concepts, Reactivity Controlled Compression Ignition (RCCI) and Partially Premixed Combustion (PPC), are studied in CI engines. These concepts are ultra clean, reported to have very high indicated thermal efficiencies (57-59% in literature), and enable the usage of a wide range of (bio-) fuels (fuel flexibility). The combustion in such approaches is controlled by auto-ignition of a largely pre-mixed mixture of higher octane fuels, air and exhaust gas. Compared to classical diesel combustion, they lack direct control of combustion phasing and of rate of heat release and in general do not reach the same fuel conversion efficiency. Focus of the research is on maximizing efficiency and load range, specifying the best practical fuel (mix), and making the concepts robust for varying operating conditions. Given the sensitivity of these new concepts to operating conditions, advanced numerical combustion models will be developed based on single cylinder data and employed to optimize the fueling strategy and pin point the sources of the emissions and reduced fuel conversion efficiency. This is the main of topic of this PhD position. It is part of a larger project (4PhD positions) funded by the Dutch Science foundation NWO, DAF and TNO.

Challenge / Combustion in engines in general is controlled by chemical kinetics. Mechanism describing this accurately consist of many species and reactions which poses a big challenge for numeric simulation of engines. In this project an advanced and efficient approach, F(lamelet)G(enerated)M(anifolds)-method, is used to tackle this issue. The approach however is never used in a domain where both flame-propagation and auto-ignition may be relevant. This is a serious challenge to be investigated in this PhD project.

Project aim and description / The project aim is to develop the FGM method for the application in these RCCI and PPC engine concepts. The FGM method is already applied in turbine (pre-mixed flame propagation) and classical diesel engine (non-premixed, auto-igniting diesel spray flames). The model needs to be extended towards an accurate description of RCCI and PPC combustion which are dominated by auto-ignition of a stratified charge and/or flame-propagation. Hence the methodology needs to automatically account for the relevant mode occurring (auto-ignition vs flame propagation). This would a major breakthrough for the FGM method in combustion engines.

Working location / The position will be a so-called Dual PhD position between the TU/e, Power and Flow group ( www.tue.nl/power-flow ) at the Mechanical Engineering department of the Eindhoven University of Technology and the CMT institute ( https://www.cmt.upv.es/ ) at the Universitat Politècnica de València (UPV). The first two years the candidate will be stationed at the Eindhoven University of Technology working on developing the FGM method for RCCI and PPC combustion. The second two years will be spent at the Universitat Politècnica de València where the focus will shift towards the flame propagation part. However, if the progress is fast already in the first years this aspect can be studied.

Job requirements

  • Do you have an MSc degree in mechanical engineering, physics, chemistry or (numerical) mathematics?
  • Do you have experience with numerical methods and CFD software
  • Do you have experience with a programming language, preferably C and C++
  • Do you dream of contributing to a breakthrough in the area of sustainable powertrains?

If so, you are the right candidate for this position.

Conditions of employment

We offer:

For the 1st and 2nd year, at the TU/e

  • A full time appointment for two years by the Eindhoven University of Technology http://www.tue.nl/en/;
  • Gross monthly salary from € 2325 (first year) and € 2709 (2nd year) in line with the Collective Agreement for Dutch Universities;
  • A package of fringe benefits, including holiday allowance of 8% end-of-year allowance of 8,3%, a development program for PhD students (Proof program), and sport facilities.

For the 3rd and 4th year, at UPV

  • A four years enrolment in the Universitat Politècnica de València (http://www.upv.es/index-en.html) PhD Program, with two years (3rd and 4th) at CMT-Motores Térmicos Research Institute (http://www.cmt.upv.es)
  • Gross yearly salary equal to € 16127.59 (2 years) in line with the PhD Students Grant Program of the Universitat Politècnica de València;
  • A package of fringe benefits, including full granted PhD taxes, full paid vacations according with the PhD students University Statutes, Spain national medical insurance and access to sport facilities and/or other University services.

PhD students in Mechanical Engineering at TU/e participate in educational tasks of the department, equivalent to around 5% of the contract time.

Information and application

More information can be obtained from: Dr.ir. Bart Somers (l.mt.somers[at]tue.nl  / +31 40 2472107) at the TU/e and Dr. R. Novella (rinoro[at]mot.upv.es / +34 620700409) at the UPV.

You can send your application (including a cover letter, statement of research interests, a CV, and names of three references) by using the 'apply for this job'-button on this page.