From a scientific perspective, contact line motion remains a challenging subject for both theoretical, experimental and numerical fluid mechanics due to the occurrence of a shear stress singularity at the three-phase contact line. In technological applications such as immersion lithography, it is desirable to displace liquid across a partially wettable but heterogeneous (wafer) surface as quickly as possible and without leaving any residue. In this project you will investigate the interplay between capillary and inertial aspects of contact line motion and its interaction with non-flat surface topography and variable surface composition. You will specifically consider the critical substrate speed – corresponding to the transition towards droplet shedding or the entrainment of thin films on the surface – as a function of the geometrical and compositional surface parameters. You will also study the dynamics of splashing, which occurs on topographically patterned surfaces, when an array of high-speed gas-jets is used to displace and control the receding side of the liquid meniscus.
This project consists of a combination of experiments and numerical simulations. The experiments will involve high-speed visualization of contact-line dynamics on suitably prepared surfaces. You will study surface heterogeneities both regarding composition and topography and systematically vary the dimensions, shapes and amplitudes of the patterns. The numerical simulations will be based on existing finite-element, lattice Boltzmann and volume-of-fluid codes.
You will become a member of the group Fluids & Flows of the Department of Applied Physics and contribute to our research line of Micro- and Nanofluidics. This project is part of a larger research program that involves close collaboration with the University of Twente and the research division of ASML. Moreover, it is embedded in the J.M.Burgerscentrum – the Dutch National Research School on Fluid Mechanics. It offers the unique opportunity for you to do high-level fundamental research with clear application-inspired and technology-relevant aspects. Your results will help improve immersion lithography, which is a fabrication technology for semiconductor devices that are at the heart of all modern technology (e.g. computers, smart phones, electrical cars, …).
Besides research you will also contribute to education within our group and the Department of Applied Physics. You will guide and supervise BSc and MSc students in their research projects. Other assistance in education, e.g. in BSc-level courses, is usually limited to around 5% of your contract time. Note that if you are specifically interested in teaching and education, there is the option for a 1-year extension of your PhD studentship. Your teaching and education tasks will then amount to a time equivalent of more than a full contract year during your PhD project. Please express your interest to the vacancy holder/supervisor in charge.
For the experimental position, we are looking for an enthusiastic PhD-student with an excellent background in fluid dynamics. Typically, you have an MSc degree in (applied) physics, mechanical or chemical engineering. Prior experience with experiment design, instrument control, data acquisition and image analysis are assets. You should be able to work in a team and have good written and oral communication skills in English.
A meaningful job in a dynamic and ambitious university, in an interdisciplinary setting and within an international network. You will work on a beautiful, green campus within walking distance of the central train station. In addition, we offer you:
About us
Eindhoven University of Technology is an internationally top-ranking university in the Netherlands that combines scientific curiosity with a hands-on attitude. Our spirit of collaboration translates into an open culture and a top-five position in collaborating with advanced industries. Fundamental knowledge enables us to design solutions for the highly complex problems of today and tomorrow.
Curious to hear more about what it’s like as a PhD candidate at TU/e? Please view the video.
Information
Do you recognize yourself in this profile and would you like to know more?
Please contact prof.dr. Anton A. Darhuber, e-mail a.a.darhuber@tue.nl.
Visit our website for more information about the application process or the conditions of employment. You can also contact HRServices.flux@tue.nl.
Are you inspired and would like to know more about working at TU/e? Please visit our career page.
Application
We invite you to submit a complete application by using the 'apply now'-button on this page. The application should include a:
We look forward to your application and will screen it as soon as we have received it. Screening will continue until the position has been filled.