Skip to content  

Working at TU/e

PhD on Efficient tools for analysis of hybrid Additive Manufacturing processes

PhD on Efficient tools for analysis of hybrid Additive Manufacturing processes

The PhD vacancy is available in the section Mechanics of Materials, led by Prof. Marc Geers, and is part of the large-scale collaborative Dutch/German project AMPERE. The PhD student will be supervised by dr. Joris Remmers and prof. Olaf van der Sluis.
Mechanical Engineering
Date off
Reference number

Job description

Today’s electronic products are generally an assembly of separate parts: housings, structural elements, populated printed circuit boards (PCB) and discrete devices. This has been the case for decades, and the drive to reduce cost and improve quality has resulted in standardized components and sub-assemblies that are manufactured into products mass produced in enormous quantities.

However, in the drive towards more and more miniaturized products, the housings and structural elements are increasingly competing for space with the electronic parts. At the same time there is an increasing demand for personalized products that are tailored to a specific taste or environment like luminaires for consumer and professional lighting, or to the shape of the body for medical products (catheters, minimally invasive instruments, hearing aids etc.).

Recent developments in additive manufacturing technologies (3D printing) allow for the manufacturing of structural components that not only can be personalized to practically any shape, but that also contain electrical functionality. This hybrid additive manufacturing technology is sometimes also referred to as 4D printing since it adds a new degree of freedom to regular 3D printed structures.

In order to improve the quality of 3D printed products a detailed analysis of the evolution of material properties during the printing process is needed. Next to in-line measurements and experimental validation, numerical simulations can provide a deeper understanding of the effects of print process conditions and the properties of the base material on the quality of the finished product.

The objective of this project is to develop novel physics-based, thermo-mechanical models for a detailed description of the evolution of material properties in the product during printing. These models will be implemented in the group’s existing numerical framework and will enable a product performance analysis of the finished product. As these detailed computations tend to become extremely large, computational efficiency is key. Therefore, the second contribution in this project is to develop model order reduction techniques to significantly decrease calculation times, without losing accuracy. Finally, all simulation models developed in the work package will be combined with the industry expertise on hybrid AM product development to generate an integrated design framework.

Section description

The research activities of the Mechanics of Materials group ( concentrate on the fundamental understanding of various macroscopic problems in materials processing and forming, which emerge from the physics and the mechanics of the underlying material microstructure. The main challenge is the accurate prediction of mechanical properties of materials with complex microstructures, with a direct focus on industrial needs. The thorough understanding and modelling of ‘unit’ processes that can be identified in the complex evolving microstructure is thereby a key issue. The group has a unique research infrastructure, both from an experimental and computational perspective. The Multi-Scale Lab allows for quantitative in-situ microscopic measurements during deformation and mechanical characterization and constitutes the main source for all experimental research on various mechanical aspects of materials within the range of 10-9 – 10-2 m. In terms of computer facilities, several multiprocessor-multi-core computer clusters are available, as well as a broad spectrum of in-house and commercial software.

Job requirements

Highly talented, enthusiastic candidates with excellent analytical skills and high grades are encouraged to apply. An MSc degree in Mechanical Engineering, Physics, Materials Science, or a related discipline is required, as well as a strong background in continuum mechanics and computational methods and the implementation of these methods in advanced numerical frameworks. In particular, students with a specialization in micro-mechanics, thermo-mechanical materials modelling, and finite element techniques are encouraged to apply. The ideal candidate has excellent scientific skills as well as outstanding verbal and written communication skills.

Conditions of employment

  • A meaningful job in a dynamic and ambitious university with the possibility to present your work at international conferences.
  • A full-time employment for four years, with an intermediate evaluation after one year.
  • To support you during your PhD and to prepare you for the rest of your career, you will have free access to a personal development program for PhD students (PROOF program).
  • A gross monthly salary and benefits in accordance with the Collective Labor Agreement for Dutch Universities.
  • Additionally, an annual holiday allowance of 8% of the yearly salary, plus a year-end allowance of 8.3% of the annual salary.
  • A broad package of fringe benefits, including an excellent technical infrastructure, moving expenses, and savings schemes.
  • Family-friendly initiatives are in place, such as an international spouse program, and excellent on-campus children day care and sports facilities.

Information and application

More information

Do you recognize yourself in this profile and would you like to know more? Please contact
dr. Joris Remmers, j.j.c.remmers[at] or prof. Olaf van der Sluis, o.v.d.sluis[at]

For information about terms of employment, click here  or contact HRadviceME[at]

Please visit to find out more about working at TU/e!


We invite you to submit a complete application by using the 'apply now'-button on this page.
The application should include a:

  • Cover letter in which you describe your motivation and qualifications for the position.
  • Curriculum vitae, including a list of your publications and the contact information of
    three references.
  • Brief description of your MSc thesis.

We do not respond to applications that are sent to us in a different way.
Both national and international applications to this advertisement are appreciated. Review of applications will begin immediately and continue until the position is filled. Promising candidates will be contacted by email.

Please keep in mind you can upload only 5 documents up to 2 MB each. If necessary please combine files.