Objective:
To research, design, implement, and evaluate an ultra-low-power Spiking Neural Network (SNN) architecture that leverages in-memory computing principles for efficient online learning.
Background:
The field of neuromorphic computing seems to offer a transformative solution for achieving intelligence at the edge. By emulating the brain's efficient biological mechanisms through Spiking Neural Networks (SNNs), neuromorphic computing systems not only promise substantial energy efficiency but also enhance real-time processing capabilities when integrated with online learning.
The conventional von Neumann computing architectures, characterized by separate memory and processing units, encounter performance constraints due to the continual data transfer between these segments. This structure leads to heightened energy consumption and processing time. Additionally, the widespread reliance on energy-intensive dynamic random-access memory (DRAM) exacerbates these energy concerns, particularly when grappling with the intensive computational requirements of online learning tasks in SNNs. In response to these challenges, the research landscape is shifting. Notable innovations like IBM's TrueNorth chip, which mirrors neural networks, are emerging. Alongside these digital solutions, there's a burgeoning interest in exploring analog, hybrid, and advanced nanoelectronic devices, with a keen focus on those boasting memristive attributes. In-memory computing, which conducts calculations directly within memory storage, has become a popular design choice, further reducing energy while decreasing latency.
Research Questions:
Significance:
This research aims to push the boundaries of neuromorphic engineering by combining the strengths of SNNs and in-memory computing. The outcome has the potential to revolutionize ultra-low-power applications, especially in edge devices, wearables, and IoT, making intelligent systems more pervasive and sustainable.
A meaningful job in a dynamic and ambitious university, in an interdisciplinary setting and within an international network. You will work on a beautiful, green campus within walking distance of the central train station. In addition, we offer you:
About us
Eindhoven University of Technology is an internationally top-ranking university in the Netherlands that combines scientific curiosity with a hands-on attitude. Our spirit of collaboration translates into an open culture and a top-five position in collaborating with advanced industries. Fundamental knowledge enables us to design solutions for the highly complex problems of today and tomorrow.
Curious to hear more about what it’s like as a PhD candidate at TU/e? Please view the video.
Information
Do you recognize yourself in this profile and would you like to know more?
Please contact dr.ir. S. Stuijk, email s.stuijk[at]tue.nl.
Visit our website for more information about the application process or the conditions of employment. You can also contact HR Services, email HRServices.Flux[at]tue.nl.
Are you inspired and would like to know more about working at TU/e? Please visit our career page.
Application
We invite you to submit a complete application by using the apply button.
The application should include a:
We look forward to receiving your application and will screen it as soon as possible. The vacancy will remain open until the position is filled.